Solving for a given variable

I can rewrite (rearrange) an equation or formula for a given variable.

\[2x + y = 4 - 2x \]

Group Work:
Rearrange the following equations so that they equal "x"

<table>
<thead>
<tr>
<th>Equation</th>
<th>3x + 2y = 8</th>
<th>(\frac{x}{a} + b = c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\frac{a}{a} - bx = c)</td>
<td>(3x + 2y = 8)</td>
<td>(\frac{x}{a} + b = c)</td>
</tr>
<tr>
<td>(\frac{-b}{b} = \frac{c-a}{b})</td>
<td></td>
<td>(\frac{x}{a} = (c-b)a)</td>
</tr>
<tr>
<td>(x = \frac{c-a}{b})</td>
<td></td>
<td>(x = a(c-b))</td>
</tr>
</tbody>
</table>
Purpose:
* Solve an equation for another variable.

* This is just like solving an equation ... you still use the same steps and inverse properties.

\[F = \frac{9}{5} C + 32 \]

Solve for \(C \).

\[\frac{5}{9} (F - 32) = \left(\frac{9}{5} C\right) \]

Solve for \(C \).

\[\frac{x - a}{b} = c \]

Solve for \(x \).

\[bc = x - a \]

\[H = 2\sqrt{J} \]

Solve for \(J \).
<table>
<thead>
<tr>
<th>2x + y = 7 For y.</th>
<th>a(x + b) = c For x.</th>
</tr>
</thead>
<tbody>
<tr>
<td>18x - 2y = 26 For y.</td>
<td>c = $\frac{x+a}{b}$ For x.</td>
</tr>
<tr>
<td>3 + 6x = 11 - 4y For y.</td>
<td>$\frac{3x}{a} + 4b = c$ For x.</td>
</tr>
</tbody>
</table>

12 = 9x + 3y

A. 4 - 3x = y
B. 3x + 4 = y
C. $\frac{12}{3} - \frac{9}{3}x = y$
$2 + 6y = 3x + 4$

- **A**: $y = \frac{1}{2}x + 2$
- **B**: $y = 0.5x + 0.33$
- **C**: $y = \frac{1}{2}x + \frac{1}{3}$

$c = ax - bx$

- **A**: $x = c(a - b)$
- **B**: $x = \frac{c}{a - b}$
- **C**: $x = \frac{c}{b - a}$
Today's Target

Check 3.7 answers

3) 36%
5) 28
7) 150
9) 70%
11) 6%
13) 69
15) 25
17) 95
22) 85%
24) 33.8
26) 16%
28) 72%
13) 48.0 people per square mile